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Chapter 1

Finite Differences and Differential Equations

§1.1. Finite Difference Approximation.

The finite difference approximation of a differential equation is based on the idea that the derivative of a
continuous-valued function, being itself a continuous-valued function, can be approximated near some specific
point by the ratio of differences of the function values near that point and the independent variable values
near that point

dy

dx
≈ y1 − y0

x1 − x0
(1.1.1)

By replacing the derivatives in the expression for the differential equation with a ratio of differences we obtain
an algebra problem to be solved for some discrete (or sampled) function value, yj , in terms of neighboring
values yj+1, yj+2, ..., yj−1, yj−2, ..., such that

yj = aj−1yj−1 + aj−2yj−2 + . . . + bj+1yj+1 + bj+2yj+2 + . . . (1.1.2)

where the expression in (1.1.2) is solved simultaneously at each point in the numerical model.

This can be seen in detail in the well-known works on numerical analysis. The continued reiteration of
the resulting expressions may not converge (to a unique solution) or may not have enough accuracy to be
useful. Hence, the major work in finite differencing centers on which approaches converge and predicting the
accuracy of the outcome.

The subject of numerical integration appears to be an art rather than a rigorous branch of mathematics.
The literature traditionally contains various separate but related topics: interpolation and extrapolation,
zeros of polynomials, matrices, numerical quadrature, etc. The numerical solution of differential equations
has evolved into two separate areas of study. Ordinary differential equations are widely solved numerically in
control systems engineering. The numerical solution of partial differential equations has remained the arcane,
albeit moribund, foundation of the generally accepted finite element algorithm used in aircraft engineering.
A unifying concept for numerical integration that can include both ordinary differential equations (ODE)
and partial differential equations (PDE), if it exists, has not been generally accepted.
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§1.2. The Green’s Function Comparison.

The subject of Green’s functions is almost never discussed as an approach to the numerical solution of
differential equations. More of an academic subject, Green’s functions are typically studied in the mathe-
matical physics works on electromagnetism or heat diffusion. An interesting aspect of this subject that goes
unmentioned is that Green’s functions have been found for both oridinary differential equations and partial
differential equations. Perhaps due to the segregation between the academic cultures of physics, applied
mathematics, and engineering the subject of Green’s functions has not attracted the amount of attention
given to other techniques.

In the area of vector calculus the impulse response solution is synthesized from Green’s Theorem as a Green’s
function solution. The solution of a differential equation in U(x) is written in terms of the Green’s function
and its gradients

G(x, x′),
dG(x, x′)

dx′
(1.2.3)

as a surface integral over the boundary weighted by dG/dx′ and a volume integral of the inhomogeneous
term weighted by G(x, x′).

U(x) = −
∮

S

dG(x, x′)
dx′

U(x′)dx′ +
∫

V

G(x, x′)f(x′)dx′ (1.2.4)

One immediate observation that can be made about the above expression is that the integrals can be
interpreted as the continuous, infinitesimal equivalents to sums in the finite domain.

Proposition 1.2.1.

The numerical solution to the simplest homogeneous differential equation, Laplace’s equation, in a
small region is the weighted sum of the neighboring function samples.

That is to say, the algebraic expression we obtain from ”replacing” the continuous-valued derivatives with
finite differences is actually an interpolation of the neighbor values and, possibly, perturbed by a source term.
The coefficients of the neighbor values are interpolation functions (i.e., influence functions) in the same sense
as the Lagrange interpolation formula.

U(x′) =
n∑

j=1

Lj(x)Uj + P (x′)f(x′) (1.2.5)

The implication here is that the two terms in equation (1.2.5) correspond to the two terms in the Green’s
function magic rule, (1.2.4). And furthermore, the numerical equivalent of the Green’s function gradient,
dG(x, x′)/dx′, is the interpolation function at the neighbor point j. The numerical equivalent of the Green’s
function itself is the factor P (x′), which is a synthesis of the interpolation functions. More precisely, the
factor P(x’) would be the numerical Green’s function, but here the source and observation locations coincide.
In order for the factor P to be named a Green’s function it must be capable of propagating the source effect
at x′ to the function value at x. P must be made a function of both x′ and x:

P (x′) −→ P (x, x′)
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For the purposes of numerical integration that consideration may or may not be needed. The factor P (x′)
is used to invert the effect of the source term at x′ to find the function value, U , at x′.

§1.3. The Role of Interpolation.

The importance of interpolation in numerical integration is well known. However, it may be useful to view
interpolation as the central concept of numerical integration. Consider the following observation taken from
the calculus of finite differences (Boole):

Proposition 1.3.2.

The Nth-order finite difference, equivalent to differencing the differential equation dny/dxn, is a
generating function for producing interpolation functions.

In other words, the algebraic expression obtained from replacing the Nth-order derivative with differences
in equation (1.1.1) is an interpolation. The coefficients of the neighboring function values are interpolation
functions. It may be worthwhile, in finding support for this idea, to review the D operator in George Boole’s
1860 book, A Treatise on the Calculus of Finite Differences.

If we entertain the ideas in Proposition 1.2.1 and Proposition 1.3.2 we must include the general problem of
an arbitrary differential equation, which is the sum of derivative terms in decreasing order. Consider first
the highest-order derivative, and let its solution be a weighted sum of neighbor values and interpolation
functions. What will be the effect of adding the lower-order derivative terms? The following proposition is
an attempt to provide one answer to that question:

Proposition 1.3.3.

The sum of decreasing-order derivatives in a finite difference equation contribute adjustments to the
interpolating functions obtained from the highest-order derivative.

In other words, given an arbitrary differential equation approximated by a finite difference solution, the
solution is still a weighted sum of the boundary neighbor points. However, the interpolation functions that
would have resulted from only the highest derivative must be modified to satisfy the additional requirement
of the lower derivatives.

§1.4. Integration by Terms.

We discuss the finite difference approach as an approximation, and we say that the derivatives are ”replaced”
by their finite difference equivalents. But this is merely common terminology and is used for convenience.
In the actual calculation of a solution it would be dangerous to overlook the fact that a derivative is not
”replaced” by a finite difference but rather, it is successively integrated. The first-order difference is obtained
from the first-order derivative by The Fundamental Theorem of Calculus:

y1 − y0 =
∫ 1

0

dy

dx′
dx′ (1.4.6)

We must assume that y(x) is an analytic function over the region, and so it has a convergent Taylor series
at x, and so over a smaller and smaller region its geometric curve approaches a straight line.

The reason for emphasizing this obvious fact is that the reduction of a differential equation to a finite
difference should proceed according to a linearized integration over a differential region and not by trivial
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substitution by differences. For example, one of the terms of the differential equation could be a parameter
that is a function of x, say b(x). Its contribution to the difference equation would be a quadrature:

∫ 1

0

b(x′)dx′ ≈ 1
2
(b1 + b0) (1.4.7)

The quadrature might be the average shown above, or it might be more useful to obtain a higher-order
quadrature. The proper decision may be guided in light of Proposition 1.3.3. If we design a finite difference
solution to be a weighted sum then the result of equation (1.2.5) could be adjusted to that end. Essentially,
a weighted sum is usually defined such that the sum of the weights is unity. During the reduction to finite
differences the resulting interpolation functions should be checked that they sum to unity. Additionally, the
resulting interpolation functions should be considered influence functions. That is, the weight function of
each neighbor value should be unity at that point and be zero at all other neighbor points.
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Chapter 2

Interpolating Polynomials and Influence Functions

§2.1. Polynomials in 1 Dimension.

For a more detailed, introductory account of polynomial interpolation see Elementary Theory and Application
of Numerical Analysis by David G. Moursund and Charles S. Duris, and Numerical Methods for Scientists
and Engineers, second edition, by R. W. Hamming.

Polynomial interpolation is the operation of finding an nth-order polynomial, Pn(x), that passes through
N +1 known function points, f(x1), f(x2), ..., f(xn), f(xn+1). The interpolating polynomial is known to be
solved by two different but equivalent approaches: the Lagrange Interpolation formula, and the Vandermonde
matrix. The first of these is the Lagrange Interpolation formula, written

Pn(x) =
n∑

j=0

Lj(x)f(xj) (2.1.1)

where the coefficients, Lj(x), are the Lagrange interpolation functions. The interpolation functions are
themselves polynomials, each multiplying a corresponding data point, f(xj), of the data set to be ”fitted.”
The property of each Lagrange function, Lj(x), is that it is unity at the location xj corresponding to the
data point f(xj) which it multiplies, and is zero at all other data points, f(xk), k 6= j. In other words,
this polynomial should be trivial to derive, because the zeros of the polynomial are known. As an example,
consider an interpolating polynomial between three points, f(x1), f(x2), and f(x3). To find the Lagrange
function L3(x) that multiplies the point at x3 we need only construct a polynomial whose zeros are at x1

and x2.

L3(x) = (x− x1)(x− x2)

And to make it be unity at x3 simply calculate the value at x = x3 and divide by the result,

L3(x) =
L3(x)
L3(x3)

=
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

The second approach is to obtain the interpolating polynomial from the solution of the Vandermonde matrix.
For a set of N + 1 data points construct an Nth-degree polynomial

Pn(x) = a0 + a1x + a2x
2 + . . . + anxn (2.1.2)

whose coefficients are to be solved by matching the polynomial at the N + 1 data points. The coefficients
aj are the solution to a set of simultaneous equations, equating the polynomial at each of the n + 1 known
function values.
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Pn(x1) = a0 + a1x1 + a2x
2
1 + . . . + anxn

1

Pn(x2) = a0 + a1x2 + a2x
2
2 + . . . + anxn

2
...

Pn(xn) = a0 + a1xn + a2x
2
n + . . . + anxn

n

which is equivalent to the matrix equation


1 x1 x2

1 x3
1 . . . xn

1

1 x2 x2
2 x3

2 . . . xn
2

...
1 xn x2

n x3
n . . . xn

n




a0

a1
...

an

 =


Pn(x1)
Pn(x2)

...
Pn(xn)

 (2.1.3)

The matrix on the left-hand side of (2.1.3) is the Vandermonde matrix.

Another way to view these two different approaches is that the interpolating polynomial can be constructed
from a set of influence functions (i.e., the Lagrange functions) that are like propagators, each contributing
the influence of the data point it multiplies. The polynomial found by solving the Vandermonde matrix
equation (2.1.3) can be likewise constructed by using the Vandermonde matrix equation at each of the data
points individually. Say, for the influence function at x1 the equation would be


1 x1 x2

1 x3
1 . . . xn

1

1 x2 x2
2 x3

2 . . . xn
2

...
1 xn x2

n x3
n . . . xn

n




b0

b1
...

bn

 =


1
0
...
0

 (2.1.4)

to obtain the influence function, L1(x),

L1(x) = b0 + b1x + b2x
2 + . . . + bnxn (2.1.5)

§2.2. Polynomials in 2 Dimensions.

Suppose we want an interpolating polynomial between three points in the plane, x1, y1, x2, y2, and x3, y3.
We can follow the same recipe of matching polynomial coefficients by setting values at the three points. The
polynomial

P (x, y) = ax + by + c (2.2.6)

is found using the set of simultaneous equations

 x1 y1 1
x2 y2 1
x3 y3 1

  a
b
c

 =

 P1

P2

P3

 (2.2.7)

The solution is
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a =
P1(y3 − y2) + P2(y1 − y3) + P3(y2 − y1)
x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

b = −P1(x3 − x2) + P2(x1 − x3) + P3(x2 − x1)
x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

c =
P1(x3y2 − x2y3) + P2(x1y3 − x3y1) + P3(x2y1 − x1y2)

x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)
(2.2.8)

This is a linear, two-dimensional interpolation in x and y. The first observation we make is how easy this
formula was to generalized from the one-dimensional case of polynomial interpolation. In the Vandermonde
matrix, the y coordinates were simply added to each simultaneous equation. It would seem that the above
result provides a more direct alternative to the more common bilinear interpolation method. The points did
not need to be arranged with rectangular grid spacing, which leads to the following observation:

Proposition 2.2.1.

Interpolation between points of a scalar field depends on distance, not direction.

Clearly, the above two-dimensional interpolation can also be decomposed into a set of influence functions
that weight the data values in the calculation. All that is needed is to recalculate the Vandermonde matrix
to be unity at the coordinate xj , yj and zero at all others. Although it seems obvious from the examples
given, it would be worthwhile to remember the following common property of these interpolations:

Proposition 2.2.2.

Interpolation can be written as a weighted sum.

§2.3. Visual Interpretation in 2 D.

The calculation in equation (2.2.8) becomes impractical, even on a computer, for N greater than 3. The need
for more efficient methods for calculating interpolation coefficients leads to a re-examination of polynomial
interpolation from a geometric perspective. Your mathematical intuition will tell you that the above formula
appears to contain cross products. It fact, the denominator is the cross product of the vectors ~R21 connecting
points 2 to 1 and vector ~R32 connecting point 3 to point 2. In other words, the denominator is equal to twice
the area of the triangle. But the interpolation is a weighted sum, and the normalization of the weighted sum
is usually the sum of the weights. So, immediately we should expect that the weights are themselves areas.

To see that the influence functions are areas consider the simple example when the triangle encloses the
origin. Now each corner point of the triangle can be visualized as a vector from the origin to the point. For
example, point x1, y1 is a vector ~R1, and so on. Now suppose that we choose to calculate the value at the
origin itself. Then x = 0, y = 0, and the only term remaining to calculate is the coefficient c. Rewriting c as

c = P1
(x3y2 − x2y3)

2A
+ P2

(x1y3 − x3y1)
2A

+ P3
(x2y1 − x1y2)

2A

Noting that the numerators of the terms are ~R2 × ~R3, ~R3 × ~R1, and ~R1 × ~R2, it becomes evident that the
coefficient multiplying each point is twice the area of the triangular sector opposing it. Then the coefficient
c can be rewritten as

c = P1
A23

A
+ P2

A13

A
+ P3

A12

A
(2.3.9)
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Figure 2.1.

Although we set the coordinates x and y to zero, the result still holds when they are nonzero. The coefficients
a and b are offsets to the calculation when x and y are not at the origin.

There is a parallel here to the Lagrange interpolation formulas in one dimension. The analogous linear case
in one dimension is just a line segment divided into two segments. The coefficients, i.e., influence functions
for the line segments are the lengths of the opposing line segments.

§2.4. 2 D Interpolation by Opposing Areas.

The area opposite to the anchoring boundary point is the minimum dimensional quantity which can make
the influence function vary between 1 at the anchor point and 0 at all other points, and goes to zero at the
boundary lines. For polygons with the number of vertices, N , greater than three an opposing area can no
longer be uniquely identified.

Consider a four-sided polygon with an observation point x, y in its interior. The line segments between the
observation point and the vertices subdivide the polygon into four triangles, S1, S2, S3, and S4.

Figure 2.1.

For the influence function corresponding to vertex 1 a function is needed which becomes unity at point 1 and
goes to zero at the other three points. For the simpler case of the triangle we could see that each point could
be matched to a corresponding sector opposite to the interior point, P . But with a four-sides figure there is
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no one sector area that will go to zero when point P moves to all three other points. On the other hand, the
product of the areas of sectors S2 and S3 does go to zero as desired, and becomes unity (when normalized)
at point 1. Then similar products can be made to produce influence functions for the other points.

For a five-sided polygon the product of the areas of two sectors is not sufficient. However, the product of
three areas will work.

Figure 2.2.

In Figure 2.4.2 it will be observed that as point P is moved to any of vertices 2, 3, 4, or 5 that the product
of area sectors S2, S3, and S4 goes to zero. When P moves to vertex 1 the (normalized) product goes to
unity. Then for each other vertex in the figure, to construct an influence function which goes to unity for
that point and zero for all others it is sufficient to take the product of the sector areas which are not adjacent
to it. So, the calculation of the unnormalized influence coefficients becomes

N1 = A2A3A4

N2 = A3A4A5

N3 = A4A5A1

N4 = A5A1A2

N5 = A1A2A3 (2.4.10)

The influence functions are normalized by dividing by the sum of all the weights such that they sum to
unity. The general interpolation of the value of U at some point x, y in the pentagon is then calculated by
calculating each of the sector areas, A1, A2, A3, A4, A5, which are made by drawing lines between the point
x, y and each of the vertices, and weighting the values U1, U2, U3, U4, U5, with a corresponds product of
opposing areas divided by the normalization factor.

U(x, y) =
U1A2A3A4 + U2A3A4A5 + U3A4A5A1 + U4A5A1A2 + U5A1A2A3

A2A3A4 + A3A4A5 + A4A5A1 + A5A1A2 + A1A2A3
(2.4.11)

The surface plot of the pentagon with influence function for vertex 1 set to unity is shown in the figure
below. The advantage of interpolation by opposing areas is that the influence function for a given point goes
to zero, not only at the zero points, but along the side curves between the zero points.
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Figure 2.3.

By comparison, observe the corresponding influence function in the following figure which was derived from
a Vandermonde matrix solution. Note that the curves between the zero points oscillate.

Figure 2.4.
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Chapter 3

Introduction to Green’s Functions

§3.1. Definition of Green’s Functions.

Green’s functions are a form of impulse response function in the study of vector calculus. Applications of
Green’s functions are found in mathematical physics topics such as electromagnetism, heat transfer, fluid
dynamics, and quantum mechanics. This section is intended only as the barest introduction. For rigorous
derivations of Green’s functions see Arfken, ”Mathematical Methods for Physicists, and Jackson, ”Classical
Electrodynamics.”

The solution of a differential equation is composed of the homogeneous solution and an inhomogeneous term.
The Greens function is the inhomogeneous part of the solution to differential equation as the sum of impulse
forces (i.e. sources). If you write an arbitrary differential equation in y(x) as an operator, L, acting on y(x),

L · y(x) = −f(x) (3.1.1)

Then the inhomogeneous part of the solution (i.e., the particular solution) is written

yp(x) =
∫

x′
G(x, x′)f(x′)dx′ (3.1.2)

This is the superposition of the forcing (source) term in the differential equation acting as an impulse at each
location, x, multiplied by the propagator function G(x, x′). The function G(x, x′) is the effect at x due to the
force, f(x), acting at x′. The defining property of G(x, x′) is that when the differential equation operator,
L, acts on G the result is zero everywhere but the location of the impulse force, i.e.,

L ·G(x, x′) = −δ(x− x′) (3.1.3)

The delta function on the right-hand side is the Dirac delta function. It is an impulse function defined to be
zero everywhere that its argument is nonzero. And where its argument is zero its value is ”infinite,” or said
more accurately, undefined. The Dirac delta function is obtained by differentiating a step function.

The above three equations provide the simplest definition of the Greens function for one-dimensional differ-
ential equations. In two and three dimensions the above equations are modified by the use of vector calculus
operators, but the idea is the same. A common application for Greens functions is the solution of Poisson’s
equation in electrostatics. In this context the Greens function is, roughly speaking, the potential due to a
point charge.
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§3.2. Electrostatic Green’s Function.

Suppose we want to find the electric potential due to a charge distribution. The mathematics of electro-
magnetism is based on the four coupled differential equations known as Maxwell’s Equations. For a static
electric field only one of those equations is needed, which is

∇ · ~E(x, y, z) = −4πρ(x, y, z) (3.2.4)

The electric potential is a defined quantity rather than a measured quantity. Every point in space is con-
sidered to have a potential energy equivalent to the work performed if a point charge were placed in that
position. You can visualize a point charge brought from infinity to the present position while work is per-
formed against the electric field in its surroundings. Conversely, the ”surrounding” electric field, ~E, is define
the gradient of the electric potential, and written.

~E(~r) = −∇U(~r) (3.2.5)

When we substitute this definition of ~E in equation (3.2.4), the Maxwell’s equation for the electric field, we
obtain the definition of Poisson’s equation

∇2U(x, y, z) = −4πρ(x, y, z) (3.2.6)

which is the basic equation for the electric potential. The solution of Poisson’s equation is the well known
inverse distance formula for the potential given by the following equation

U(~r) =
∫

V ′

ρ(~r′)
|~r − ~r′|

d3~r′ (3.2.7)

The potential formula in equation (3.2.7) is, however, just an idealization for the case of ”a charge in free
space.” The problem comes about when boundaries are introduced into a physical model. Boundaries change
the potential that otherwise would have been given simply by (3.2.7). A boundary might become polarized
by the surrounding electric field, and these induced dipole charges would then produce their own fields which
interact with the ambient field. Boundaries comprised of conducting surfaces produce a similar effect due to
the free charges induced, and these charges produce a secondary field that interacts with the ambient field.
In other words, equation (3.2.7) is not enough for practical work.

If the polarization charge and the induced free charge distributions could be known in advance then ex-
pressions of the form of equation (3.2.7) could be used to compute the resulting, effective electric potential
formula for a model. This is because the potential at any point is the sum of the potentials resulting from all
free charges in the configuration. The dipoles and induced charges could each be interpreted as equivalent
isolated charges and their potentials calculated using formula (3.2.7).

But you must already know the answer to the problem before you can obtain knowledge of the potentials
induced by the boundary. This makes the solution of equation (3.2.4) a bigger problem than simply ap-
plying a superposition of equation (3.2.7) everywhere in the model. Problems with electrostatic fields are
therefore solved by transforming the field problem into a potential problem. With equation (3.2.6) as an
inhomogeneous, second-order differential equation, the field sources are the inhomogeneous term, and the
solution constants depend on the potentials specified on the boundaries. This solution procedure is known
in mathematical physics texts as solving Laplace’s equation.
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The approach most commonly taught to students of advanced physics is separation of variables on equation
(3.2.6) in which known potentials are given on surfaces that lie in the direction of the (orthogonal) coordinate
directions. But few practical problems can be solved with this method.

On the other hand, the finite element technique can be used to solve almost any geometric configuration,
and the model construction requires very little understanding of the physics. The differential equation is
transformed into a matrix equation by linearizing the continuum Laplacian operator into discrete, coupled
Laplacian equations at each model node. But finite element models need uncommonly large matrices on
a computer. There are several other practical difficulties with finite element modeling which offset the
simplicity in theory. Models become unstable in regions of weak field coupling because the matrices become
nearly singular there. Solution accuracy suffers when widely different geometric scales are involved, or widely
different material coefficients.

The Green’s function technique has been largely a curiosity in mathematical physics. It has not found
practical use because you must first solve the boundary value problem before you can find the Green’s
function. Therefore, Green’s functions have not received the attention in numerical mathematics that other
methods have been given. But the Green’s function technique deserves attention because a general formula
exists which separately gives answers for each of the effects of source charges and boundary values.

To get an idea of why the Green’s function technique is different from ordinary Laplace’s equation solutions,
consider the integral in equation (3.2.7) again. This time, look at the integrand as two factors: the source
charge density, which is the function shown with the Greek letter ρ, and another factor.

∫
ρ(~r′)
|~r − ~r′|

d3~r′ =
∫

ρ(~r′) · 1
|~r − ~r′|

d3~r′ =
∫

ρ(~r′)G(~r, ~r′)d3~r′ (3.2.8)

If we look at the integral with the source charge density factored out the remaining factor contains only the
inverse distance formula. This factor is considered to contain all the geometric information in the solution
and is called the propagator. It is, in fact, the Green’s function for a charge distribution with no boundaries
present (boundaries located at infinity). That was easy, but the problem becomes difficult when boundaries
are introduced. Then the inverse distance formula can no longer be used for the Green’s function.

To demonstrate the effect of induced effects on the boundaries a similar factorization can, in principle, be
written by merely inserting integrals over the hypothetical induced polarization charges. But to find the
actual values of those induced charges on a dielectric we must solve a simultaneous problem–the work done
to place free charges in the configuration and the work needed to polarize the surface, with a reference to a
boundary value. A fixed potential on a boundary is equivalent to the presence of an equipotential surface
with free charge. Again, a simultaneous problem must be solved with reference to the boundary value. Can
we write an integral in which the boundary potential, not the boundary charge, is given?

§3.3. The Magic Rule.

A formula exists which gives the potential at any observation point due to any distribution of free charges
and the specification of boundary potential values. Every student of mathematical physics is shown the
Green’s function magic rule:

U(~r) =
∫

ρ(~r′)G(~r, ~r′)dV ′ − 1
4π

∫
U(~r′)

∂G(~r, ~r′)
∂n′

dS′ (3.3.9)

It depends on knowledge of a Green’s function and the derivative of the Green’s function on the boundary.

The magic rule is derived from Green’s Theorem as a sequence of vector calculus operations. Given two
functions U(x, y, z) and G(x, y, z), take the product U times the gradient of G and the product G times the
gradient of U ,
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U(~r)∇G(~r)

G(~r)∇U(~r)

Then apply the divergence operation to both these expressions

∇ · (U(~r)∇G(~r)) = U∇2G +∇U · ∇G

and

∇ · (G(~r)∇U(~r)) = G∇2U +∇G · ∇U

and subtract the second from the first to obtain

∇ · (U∇G−G∇U) = U∇2G + G∇2U (3.3.10)

The next step is to integrate both sides of this equation over the volume containing the sources and bound-
aries. The integration of the left-hand side is easily transformed by using the Divergence Theorem formula
and results in an integration over the boundary surfaces. Then we obtain

∫
U∇2GdV ′ −

∫
G∇2UdV ′ =

∮
U

∂G

∂n′
dS′ −

∮
G

∂U

∂n′
dS′ (3.3.11)

Continuing to turn the crank of vector calculus we make substitutions for the volume integrals in order to
obtain a formula for the potential. It can be seen that the integrand of the second integral on the left-hand
side contains the divergence of the potential. We can, therefore, use equation (3.2.6)

∇2U(x, y, z) = −4πρ(x, y, z)

as an identity and substitute the divergence of the potential with the source charge density function.

∫
G∇2UdV ′ = −

∫
G(4πρ)dV ′ (3.3.12)

We can see that the right-hand side of this transformation will become the Green’s function integral of
equation (3.2.7). But how should we interpret the first integral on the left-hand side of (3.3.11)? In other
words, what can we substitute for the divergence of G? The purpose of this substitution will be to replace
the integral with the symbolic placeholder for the solution, U(x, y, z).

The integral substitution is carried out by means of the definition equation (3.1.3) applied to Poisson’s
equation

∇2G(~r, ~r′) = −4πδ(~r − ~r′) (3.3.13)

We are saying that the divergence of this function G is equivalent to the Dirac delta function shown on the
right-hand side. The defining property of the Dirac delta function is that it transforms, or simplifies, an
integral into a function according to the rule

14



∫
f(~r′)δ(~r − ~r′)dV ′ = f(~r) (3.3.14)

With the Dirac delta function, and equation (3.3.12), the integral containing the divergence of G will be
reduced to

∫
U(~r′)∇2G(~r, ~r′)dV ′ = −4πU(~r) (3.3.15)

Now using equation (3.3.12) and equation (3.3.15) substituted into equation (3.3.11) we have, after solving
for the potential, U ,

U(~r) =
∫

ρ(~r′)G(~r, ~r′)dV ′+

1
4π

∫
G(~r, ~r′)

∂U

∂n′
dS′ − 1

4π

∫
U(~r′)

∂G(~r, ~r′)
∂n′

dS′ (3.3.16)

This formula is called the Green’s function magic rule, because it completely solves the electrostatics potential
problem with free charge sources and potentials given on the boundaries. As mentioned before, the problem
now is to find a function G(~r, ~r′) which satisfies equation (3.3.16). The two surface integrals are mutually
exclusive (at least at the same location). The presence of both integrals (at the same location) is an over
specification of the problem. From that condition follows a most important deduction: that when a potential
value is given on a boundary we require that the function G goes to zero on the boundary so that the other
surface integral will vanish.

Actually, the first surface integral in (3.3.16) is an irrelevant artifact of the derivation (3.3.10) through
(3.3.16). The gradient of the potential on the boundary is just another representation of free charge. A
particular model can be reconfigured such that all free charges are included within the volume integration.
But the first surface integral is retained for discussions of Neumann boundary conditions.

Then the electric potential, for practical purposes, can be completely solved using the formula

U(~r) =
∫

ρ(~r′)G(~r, ~r′)dV ′ − 1
4π

∫
U(~r′)

∂G(~r, ~r′)
∂n′

dS′ (3.3.17)

The function U(~r) is the electric potential observed at the point ~r due to the integration of infinitesimal
charges (the volume integral) and boundary potentials (the surface integral) at the locations ~r′. The in-
tegrations are carried out over regions that contain the sources. The Green’s function is a ”propagator,”
that is, a function which determines the change in potential over the region as a result of the geometry of
the problem. The Green’s function must be deduced for each new configuration of boundaries. When the
boundary integral of (3.3.17) is absent the Green’s function is the simple inverse distance function, but when
the boundary integral is present it is not. The Green’s function must take values of zero on the boundary,
and this condition provides the beginning for a technique for calculating a Green’s function definition.

The derivation of the magic rule as presented above provides no obvious hint as to how a Green’s function
can be found. Approaches to finding the Green’s function focus on the identity (3.1.3),

L ·G(x, x′) = −δ(x− x′)
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and the property that the Green’s function is defined to be zero on the boundary. See the standard mathemat-
ical physics textbooks for a few techniques on actually finding a Green’s function for a particular geometry.
There are typically two solutions found: the one dimensional Poisson’s equation and a free space version for
the three-dimensional Poisson’s equation.
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Chapter 4

A Simple Explanation of Green’s Functions

§4.1. A Three Point Diagram.

The current chapter is an attempt to examine the Green’s function magic rule more closely than the standard
textbooks have done. For one thing, the derivation of the magic rule from Green’s theorem is typically
performed as a purely algebraic operation without reference to diagrams. Then again, there has been
very little attention to presenting a unified technique for constructing Green’s functions applied to various
geometries.

To begin, we will consider three points in one dimension: A, B and C.

Figure 4.1.

Suppose we want to solve for the potential at point C due to potential values at points A and B. But, and
we assert this a priori, this is equivalent to saying that the potential at point C is the solution to Laplace’s
equation (or Poisson’s equation).

d2U

dx2
= −f(x) (4.1.1)

Using a finite difference approximation for the second derivative,

1
∆x

(
dU

dx

∣∣∣∣
B

−dU

dx

∣∣∣∣
A

)
= −fC (4.1.2)

and further
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dU

dx

∣∣∣∣
B

−dU

dx

∣∣∣∣
A

= −fC∆x (4.1.3)

Substituting a ”charge” for the right-hand side,

fC∆x = QC (4.1.4)

and continue with the finite difference approximation by differencing the first-order derivatives.

UB − UC

∆x
− UC − UB

∆x
= −QC (4.1.5)

With the objective of solving for U at C, multiply by the interval ∆x

(UB − UC)− (UC − UB) = −QC∆x (4.1.6)

and solving for the value of U at x = c, the answer is

UC =
UA + UB

2
+

∆x

2
QC (4.1.7)

Equation (4.1.7) is clearing suggestive of the Green’s function magic rule, with UC the calculated potential
due to boundary values at A and B and a source at C. And looking again at equation (4.1.3), it resembles
the Divergence theorem identity (or Gauss’s Law). If equation (4.1.7) is any hint at the nature of the magic
rule, then it says that we must integrate Poisson’s equation twice and solve for U at the source location.

Suppose that the term in QC on the right-hand side of equation (4.1.7) were omitted. That would be
equivalent to setting f(x) to zero, that is, solving the homogeneous differential equation. For the case of the
homogeneous differential equation the three-point potential diagram simplifies to a straight line potential
between A and B

Figure 4.2.

Now this simple difference between figures Figure 4.1.1 and Figure 4.1.2 illustrates an important observation,
that the charge is proportional to the difference in slope of the potential at point C. Or, from a physical
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perspective it may be that the charge causes the difference in slope. This observation provides a hint to
the relationship between the source term and the solution at a point. The second derivative in equation
(4.1.1) is just the 1-dimensional form of the divergence (of the gradient). In two or more dimensions the
effect of the source cannot be so simple reduced to a change in slope, but the 1-dimensional picture gives
the fundamental idea:

Remark 4.1.1.

The source is that which changes the slope of the function U, and to make the change of slope agree
with the values at the boundary the value of U at the source location must be different from what
it would have been without the source present.

Another simple, but important, observation is made by removing the source term from equation (4.1.7):

UC =
UA + UB

2
(4.1.8)

That is, for the homogeneous case the potential at the center is the average of the boundary values. But the
most intriguing observation (guess why) is that the solution, U , at the source location is finite.

The solution in equation (4.1.7) was over simplified for the sake of starting the discussion. Important
information was discarded or deliberately overlooked in the derivation which we must now restore. For one
thing, the point separations need not be constant. If we restore the locations xA, xB , and xC , then the
solution becomes

UC =
xC − xA

xB − xA
UB +

xB − xC

xB − xA
UA +

(xC − xA)(xB − xC)
xB − xA

QC (4.1.9)

The expression in (4.1.9) now shows that the potential contribution from the boundary values depends on
the point separation. Each term corresponding to a boundary value has a coordinate relation to the source
term that resembles the differentiation of a function. A comparison of (4.1.9) with the magic rule suggests
a correlation between the factor of QC in and a Green’s function.

Our three-point potential picture in figure Figure 4.1.1 presents the observation point coinciding with the
source point. We must now add more information to the picture so that source and observation point are
different. If we select some arbitrary point, x, on the picture, where there is no source applied, then the
potential U at x must lie along one of the straight lines in the figure. Suppose that we choose to observe the
potential on the left side of the source point, as illustrated in figure.

Figure 4.3.
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We can simply interpolate the value of U at x from the geometry we have already constructed. A function
U(x) can be created as a straight-line expression between points A and C. What if we visualize figure
Figure 4.1.3 as the superposition of two different three-point potential pictures: the first containing points
A, U(x), and C and the second containing points U(x), C, and B. But now the right boundary of the first
triad, point C, is not fixed. Similarly, the left boundary of the second triad, U(x), is not fixed. So the values
at U(x) and C can be solved as a system of two equations in two unknowns.

UB − UC

xB − xC
− UC − U(x)

xC − x
= −QC

UC − U(x)
xC − x

− U(x)− UA

x− xA
= 0 (4.1.10)

Now solving for U at the new location x the answer is

(xB − xC)(x− xA)
xB − xA

QC +
UB − UA

xB − xA
x +

UAxB − UBxA

xB − xA
(4.1.11)

Notice that the two equations in (4.1.10) are interchangeable except that one point coincides with a charge,
and the other does not. In other words, there is a reciprocity between the observation point x and the source
point C. If we interchange the labels on points U(x) and C this is equivalent to putting the observation
point on the other side of the charge point.

U(x)− UC

x− xC
− UC − UA

xC − xA
= −Qx

UB − U(x)
xB − x

− U(x)− UC

x− xC
= 0 (4.1.12)

Again, solving for U at x we get

(xB − x)(xC − xA)
xB − xA

Qx +
UB − UA

xB − xA
x +

UAxB − UBxA

xB − xA
(4.1.13)

§4.2. The One-Dimensional Solution.

The formulas (4.1.11) and (4.1.13) give the value of U on either side of the source charge position. Notice that
these two formulas look almost identical except that the labels on x and xC are interchanged. Why must there
be two formulas? We have just seen above that there are two formulas because we solved for the potential
at two different locations. In other words, what was left unspoken in the above discussion is that there was
an implied grid over which the points must lie. We started with a finite difference. Then, as the hand is
quicker than the eye, we inserted a continuous-valued variable, x, into the picture. The transformation from
discreteness to a continuum involves discarding information–in this case we are discarding grid labels.

Now convince yourself that with the above substitutions that expression (4.1.11) can be rewritten as

G1(x, x′) =
L− x′

L
x (4.2.14)
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Using the same substitutions in expression (4.1.13) we get

G2(x, x′) =
x′

L
(L− x) (4.2.15)

Equation (4.2.14) and (4.2.15) can be recognized as the two parts of the one- dimensional Green’s function
shown in most mathematical physics textbooks. The functions G1(x, x′) and G2(x, x′) give the potential
contributions for sources to the left side and right side of the observation point, respectively.

To jump from equations (4.1.11) and (4.1.13) to (4.2.14) and (4.2.15) seems as simple as a substitution of
variables, but it better classified as a transformation from an infinitesimal domain to a global, continuous
domain. That transformation has resulted in a function that represents the relative change in potential at
a relative position on the x axis. It will be observed that any constant potential can be added to it, and its
domain may be translated to any position. This circumstance makes clear a well-known property of Green’s
functions, namely that The Green’s function must be zero on the boundary because it is a relative change in
potential.

To demonstrate this, suppose we select a point charge at the ”jth” location xj , and an observation point to
its left. This configuration corresponds to (4.2.14). But we know that at the location x any potential may
by added, say U0, that is a solution to Laplace’s equation. But the potential U0 may itself be decomposed
into a sum of potentials, say, Ua and Ub.

U(x) = G1(x, xj)qjdx + Ua + Ub

where qj is the charge density in the region dx. Also, it may be that Ua is itself the potential resulting from
a neighboring point charge at the j− 1 location, xj−1. Similarly, the additive potential Ub may be the result
of another point charge on the right at the location j + 1. Then the potential can be written

U(x) = G2(x, xj−1)qj−1dx + G1(x, xj)qjdx + G1(x, xj+1)qj+1dx

In fact, for an arbitrary configuration of point charges–some that may be zero–the additive potential could
be a summation of Green’s function contributions on either side of the observation point,

U(x) =
∑

k

G2(x, xk)qkdx +
∑

j

G1(x, xj)qjdx (4.2.16)

Note that equation (4.2.16) does not include the boundary conditions for the potential problem. Each of the
functions G(x, x′) were defined to be zero at the boundary. In the limit as the number of point charges goes
to infinity, and the intervals dx tend to zero the sum in (4.2.16) is replaced by an integration

U(x) =
∫ x

xA

G2(x, x′)λ(x′)dx′ +
∫ xB

x

G1(x, x′)λ(x′)dx′ (4.2.17)

We have seen how a simple, three point potential diagram allowed us to capture the basic idea underlying
Green’s Theorem as well as providing a means for actually deriving a Green’s Function. When we combined
two three-point diagrams, one of them enclosing a source charge and the other enclosing an arbitrary point,
we produced a propagation from point x′ to x. Because of this we may choose to highlight the following
observation, that
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Remark 4.2.2.

We solve for the potential at the source point, and we solve for the potential at the observation
point. The two solutions are dependent on each other, being derived from overlapping three-point
diagrams. Their simultaneous solution produces an expression for one in terms of the other.

As mentioned above, we skipped the details of ”jumping” from the small, infinitesimal domain to the macro-
scopic world of continuous-valued functions. And so the defining property for Green’s functions,

L ·G(x, x′) = −δ(x− x′) (4.2.18)

did not appear in the above derivation. The Dirac delta function is the consequence that the Green’s function
satisfied Laplace’s equation everywhere in the integration domain except the location of the source, where
the divergence (of the gradient) is undefined. At the location of the source the gradient is discontinuous. In
the derivation from a three-point potential we have simply ignored that fact by stating ”there is a source at
point x = C.” A point is a mathematical object which has location but no spacial extent. But here is one
of the underlying principles of the Green’s function approach. The Green’s function is the response due to
a source with no spacial extent. From another perspective it appears that we have deliberately extracted
information from a particular response function (information about extent) to be restored by the integration.
This is the meaning of the discontinuity in the gradient which is encountered in the formal study of Green’s
functions.

For the sake of completeness, the textbook derivation of one-dimensional Green’s functions is listed below.
Although it appears somewhat truncated, it is consistent with the usual space allocated to Green’s functions
in the literature.

(1) Consider 2 regions on the one-dimension domain between the boundaries to be divided by the
(infinitesimal) source.

(2) Use the homogeneous solution as a separate solution on either side of the source location.

(3) Set the solution in the left region to be zero at the left boundary, and set the right-hand side
solution to be zero at the right boundary.

(4) Match the two solution functions at the source location, which enforces the continuity of the
function.

(5) Match the derivatives of the two solution functions at the source location, given that the source
location is at a discontinuity of the first derivative.

It should be observed that the above standard treatment incorporates the definition of equation (4.2.18),
and that the Green’s function is zero at the boundary. But the standard derivation leaves out the issue of
the surface term in the Green’s function magic rule. Of course, in one dimension the surface term is just
the weighted sum of the boundary values. It is left for us to produce a clearer concept of the relationship
between the boundary term and the volume term.

Consider again the three-point potential diagram and the associated finite difference solution equation (4.1.9).
We have seen that the weight factor on f(x) is not really equivalent to a Green’s function, because the source
location, x′, and observation location, x, are coincident at x = xC . But equation (4.1.9) does, however,
incorporate the geometry of the configuration. And, since in one dimension the potential is finite at the
source location, x′, it will be clearer to use (4.1.9) and say that the x = x′, and

U ′ =
x′ − xA

xB − xA
UB +

xB − x′

xB − xA
UA +

(x′ − xA)(xB − x′)
xB − xA

Q′ (4.2.19)
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It can immediately be seen that the coefficients of the boundary terms constitute the weights of a weighted
sum which sum to unity. The factor on the inhomogeneous term is comprised of the multiplication of both
the numerators of the boundary factors. Recalling that an nth degree polynomial having real zeros can be
written in point-zeros form as

Pn(x) = (x− x1)(x− x2) . . . (x− xn)

it can be seen that the inhomogeneous factor is a polynomial whose zeros are the boundary points. As noted
before, the weights on the boundary terms appear to be related to the inhomogeneous term as derivatives.
In particular, the factor on UB is equal to the derivative with respect to xB of the weight on f(x), and
similarly for the weight on UA.

§4.3. Visual Integration of the Boundary.

But instead of examining only the algebra, let’s draw a picture of the relationship between the boundary
weights and the pseudo Green’s function, i.e., the inhomogeneous factor. The relationship we wish to
illustrate is that the pseudo Green’s function is a composition of the boundary weights. But rather than
describe the boundary weights as derivatives of the inhomogeneous weight, let us attempt the inverse and
say that the pseudo Green’s function is obtained by separate integrations of the the boundary functions.

In other words, since the propagator in the surface integral of the magic rule is calculated as the derivative
of the Greens function evaluated at the boundary point xb,

∂G(x, x′)
∂x′

∣∣∣
x′→xb

The inverse would be to integrate the Green’s function gradient from the boundary inward towards the
source location,

∫ x′

xb

∂G(x, ξ)
∂x

dξ → G(x, x′)

Consider first the homogeneous equivalent of (4.2.19),

U ′ =
x′ − xA

xB − xA
UB +

xB − x′

xB − xA
UA (4.3.20)

Considered as a continuous-valued function of x′, U ′ is a linear polynomial function of x′,

U(x′) = ax′ + b (4.3.21)

Then the relationship between equations (4.3.20) and (4.3.21) is that the linear polynomial in (4.3.21) is
decomposed into influence functions in (4.3.20). This is illustrated with the following diagram, where LA(x′)
and LB(x′) are influence functions.

23



Figure 4.1.

Note that both LA(x′) and LB(x′) are rescaled to show their contributions to the solution. Each is defined
to have values between zero and unity.

Figure 4.2.

One way to view the inhomogeneous, three-point potential is to present it as two homogeneous, two-point
potentials back to back.

Figure 4.3.
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From this point of view the source position is the right-hand boundary for the first problem and the left-hand
boundary for the second problem. We have seen that the potential is finite at the source position, and so we
can specify an unknown potential, UC , at the source. And this is consistent with equation (4.2.19), which
shows that the source term contributes a change in potential at x′ that results in U ′.

Now let’s try to illustrate the inverse of the differentiation that produces dG(x, x′)/dx′ from G(x, x′) by a
”visual integration” of one of the boundary weights, say LA(x′) from the boundary to an interior location.
Imaging that we can grasp the boundary potential point at x = xA and drag it to the left to x′.

Figure 4.4.

The picture is supposed to illustrate the integration as the inverse of differentiation that restores the factor
(x− xa).

∫ x′

xA

xB − x′

xB − xA
dx =

(xB − x′)(x′ − xA)
xB − xA

(4.3.22)

Now convince yourself that the differentiation that produces dG(x, x′)/dx from G(x, x′) is the act of reversing
the direction of the arrows in Figure 4.3.4. This is to suggest the following relationship between the pseudo
Green’s function and the boundary weights, that

Remark 4.3.3.

The pseudo Green’s function is the synthesis of all the boundary influence functions.

and

Remark 4.3.4.

The differentiation of the pseudo Green’s function at boundary location x0 is equivalent to moving
the source point, x′, to x0 and factoring out the dependence on x0.
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§4.4. A 2D Equivalent of Visual Integration.

The concept of visual integration of the boundary can be extended to a two-dimensional diagram, although
it must be understood that it is only an approximation, valid only in the small, differential domain.

Suppose that the two-dimensional Poisson’s equation

d2U

dx2
+

d2U

dy2
= −f(x, y) (4.4.23)

is approximately integrated over the infinitesimal region of a triangle with the linear, homogeneous solution

U(x, y) = ax + by + c (4.4.24)

Figure 4.1.

The procedure for approximating the boundary value solution will be discussed in the later chapter on
numerical Green’s functions. The solution for a triangle will also be a weighted sum of the vertex points and
their corresponding influence functions

U(x, y) = L1(x, y)U1 + L2(x, y)U2 + L3(x, y)U3 (4.4.25)

In analogy with Figure 4.3.4 the visual integration of one of the boundary functions Lj should result in the
pseudo Green’s function as the equivalent inverse of dG/dx′. Again, imagine that we can grasp the boundary
point at, say, point 1 and drag it into the triangle to point x′, y′. The idea is illustrated in the following
figure.
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Figure 4.2.

Visually, it is seen that three different homogeneous (approximate) solutions are generated around the in-
homogeneous location x′, y′ as it moves from the boundary into the ”volume” of the infinitesimal element.
Seen another way, there are now three homogeneous partitions of the element in which the source location,
x′, y′, is the boundary point for each of the partitions.

The visual integration shown above is equivalent to a path integration that introduces a factor or x′ − x0,
say, for an integration in x or y′ − y0 for an integration in y to the original influence function. The exact
form of the factor produced by the path integration will be some function A(x′, x0, y

′, y0). Similarly, the
integration from any boundary point, xk, yk to x′, y′ will produce a factor A(x′, xk, y′, yk). The Green’s
function approximation, or at least the pseudo Green’s function would then appear to be the product of all
N factors that result from the N integrations, up to a multiplicative constant.

G(x′, y′) → C
N∏
k

Ak(x′, xk, y′, yk) (4.4.26)

To reverse the procedure and obtain any one of the boundary influence functions the gradient of G(x′, y′)
must be taken and x′, y′ taken to the boundary point, x0, y0. It can be seen that the result of that gradient
would be to divide out the factor A(x′, x0, y

′, y0) from G(x′, y′). The resulting gradient then incorporates the
necessary properties of an influence function in that it goes to zero at all the other boundary points. Since
the influence functions from which it was integrated were polynomials, equation (4.4.26) is a polynomial
whose zeros are all the boundary points.
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§4.5. Inserting the Propagation Component.

But an Nth-degree polynomial we still not be a Green’s function until we separate the observation point,
x, from the source point, x′. Returning to the four-point potential in the triangle, the observation point is
some location in one of the three partitions caused by the presence of the source at x′, y′.

Figure 4.1.

It is clear from the diagram that the potential U at x, y is the solution of the homogeneous problem framed
by one of the partitions, that is, whose solution is given by one of the influence functions whose non-zero
point is now anchored at the source location. When we view the diagram as having been split into separate
homogeneous partitions then we see that solving for the Green’s function is another way of converting the
source into the potential value at x′, y′ that matches the solutions in each of the homogeneous partitions.

However, solving for the potential at the observation x, y point within the selected partition involves knowing
the potential at x′, y′. If we return to the one-dimensional problem solved in the physics classroom we can
see that this is accomplished by

(1) Matching the slope of the homogeneous solution at the source point x′ (there difference equal to
-1), and

(2) Matching the homogeneous solution at x′.

Note that the step in (1) above is equivalent to the Gauss Law integral in the small region around the source
point. In other words, we impose the condition that the curvature (i.e., the divergence) of the potential in
the neighborhood of the source charge, Q, is equal to −Q. But since we are factoring out Q (to be restored
in the Green’s function integration) we set the curvature to −1.

But to understand this matching condition it is instructive to return again to the three-point potential
diagram. In the one-dimensional problem the potential at x′ is that results from the change in slope and the
boundary values. The matching condition in one dimension is equivalent to

∂U

∂x

∣∣∣
x′+

− ∂U

∂x

∣∣∣
x′−

= −1 (4.5.27)

which is the act of matching the gradient in the x direction between the two partitions in x. Then with N
partitions (say, triangles) the N gradients should be matched at the source point, x′, y′.
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N∑
k

(∂Uk

∂x
+

∂Uk

∂y

)
= −1 (4.5.28)

The simultaneous solution of (4.5.28) and the continuity of U(x′, y′) is used, as in the one-dimensional case,
to set the coefficients in the functions Uk(x, y).

But another approach may be used for inserting the observation point. If the pseudo Green’s function can
be obtained, then it may be used to get the value of the potential at the source point x′, y′. In fact, it should
be emphasized that

Remark 4.5.5.

The pseudo Green’s function, G(x′, y′), is the value of the potential at x′, y′.

Then, take a candidate homogeneous solution, Uk(x, y), from one of the ”partitions” of the figure which will
contain arbitrary coefficients. The coefficients will be resolved by matching the solution to its value at x′, y′,

Uk(x′, y′) = G(x′, y′)

And solving for the unknown coefficients the answer, G(x, x′, y, y′) is obtained.

§4.6. Relationship to General Green’s Functions.

Green’s functions for two and three dimensions are known for the special case of free space configurations.
That means that the boundaries are assumed to be infinitely far away. The well-known two and three
dimensional Green’s functions can be found in Arfken, Mathematical Methods for Physicists.

The two-dimensional Green’s function is

G(~ρ, ~ρ′) = − 1
2π

ln |~ρ− ~ρ′| (4.6.29)

The three-dimensional Green’s function is

G(~r, ~r′) =
1
4π

1
|~r − ~r′|

(4.6.30)

But how can the simple picture of Green’s functions that was illustrated with the three-point diagram be
used to derive the above formulas? Consider the three-dimensional formula as an illustration that can be
similarly applied to the two dimensional case. For simplicity, let the location of the source point, ~r′, be at
the origin so that ~r′ = 0. Also, the multiplier 1/2π is a dimensional factor that depends on the chosen units
system, so it may be set to unity for simplicity. Then the Green’s function is rewritten

G(r, 0) =
1
r

(4.6.31)

There is no angular dependence since the Green’s function is not a function of the spherical polar variables
θ and φ. Now recall the one-dimensional, three-point potential diagram from Figure 4.1.1.
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Figure 4.1.

But the major difference between the linear picture in the x − y plane and the spacial configuration in r
is that the curves between points A and C, and between points C and B, will not be straight lines. The
derivation in one dimension, between equations (4.1.2) and (4.1.13), conceals an important property of the
problem. The potential gradients between the points are simplified forms of flux tubes. It is not actually the
gradient that vanished for the homogeneous equation but the gradient multiplied by the cross-sectional area
of a virtual surface.

The cross-sectional area of the flux tube is readily seen when we perform the finite difference of the three-
dimensional Poisson’s equation in x, y, and z.

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= −f(x, y, z) (4.6.32)

1
∆x

(∂U

∂x B
− ∂U

∂x A

)
+

1
∆y

(∂U

∂y D

− ∂U

∂y C

)
+

1
∆z

(∂U

∂z F
− ∂U

∂z E

)
= −f ′

Multiplying through by ∆x∆y∆z we get

(∂U

∂x B
− ∂U

∂x A

)
∆y∆z +

(∂U

∂y D

− ∂U

∂y C

)
∆z∆x +

(∂U

∂z F
− ∂U

∂z E

)
∆x∆y = −f ′∆x∆y∆z (4.6.33)

Here the finite difference replacements are too crude to incorporate all the essential information, because
the cross sections ∆y∆z can vary along the x direction, and similarly for the other cross sections. In other
words, each gradient term in (4.6.33) should have a unique cross section multiplier.

The consequence of having flux tubes between the points instead of mere gradients is that the varying of
the cross sections forces the gradients to vary between the points (because the flux is conserved between
the points). Consequently, the curves between the points are in general not linear. The definition of the
three point potential must now be that the flux changes discontinuously at the source point. Consider the
coordinate r as a series of concentric shells surrounding r = 0. Then the source point corresponds to a shell
of ”charge” at coordinate r = r′.
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Figure 4.2.

The three-point potential in the radial coordinate r is shown below. The point rA is at the origin, the point
rC is the source location r = r′, and the point rB is the exterior boundary point, r = R∞.

Figure 4.3.

The curve in the three-point potential between points C and B corresponds to a flux tube between the source
shell and the infinity shell. The curve between points A and C is a flux tube within the source shell. But
the region within a shell of constant potential is itself a region of constant potential, so the gradient is zero.

We have seen that the three-point potential is another way of describing the ”pseudo Green’s function” as
shown previously. And we have seen that to transform the pseudo Green’s function into a Green’s function
we must insert the propagation component, where the propagation is obtained merely by solving for the
potential at some point within a partition of the pseudo Green’s function (see Section 4.5). The appropriate
partition for this form of the pseudo Green’s function is between points rC and rB . The flux is conserved
between A and B, so the following equation holds:

F = ∆AC
dU

dr

∣∣∣
C

= ∆AB
dU

dr

∣∣∣
B

= const. (4.6.34)
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We saw how the solution of the simple three-point diagram in x resulted from two integrations, although we
cheated in the integrations by merely substituting differences. The above expression in equation (4.6.34) is
the result of the first integration, and it may be noted that it is equivalent to the Gauss Law integral. The
second integration produces the potential, U , at the observation point r between points rC and rB . That is,
we must calculate the work required to move a test charge from the shell at rB inward, against the force of
the electric field present, to r.

U(r) = −
∫ r

rB

~Edr = −
∫ r

rB

dU

dr
dr (4.6.35)

We already have an expression for dU/dr from expression (4.6.34). Because AdU/dr is constant along the
flux tube, and A is the spherical polar differential element r2dΩ,

r2 dU

dr
= const

dU

dr
=

const

r2
(4.6.36)

Then substituting (4.6.36) into (4.6.35) the answer is obtained,

U(r) = −
∫ r

rB

const

r′2
dr′ =

const

r

∣∣∣r
rB

=
1
r
− 1

rB
(4.6.37)

The term 1/rB is present because it represents the work performed to bring the test charge inward from
infinity to the location rB . The action that must be taken to make the solution equivalent to a free space
Green’s function is that the boundary at rB is extended to ”infinity.” Obviously, in the limit as rB becomes
arbitrarily large,

lim
rB→∞

(1
r
− 1

rB

)
=

1
r

(4.6.38)

so that the boundary at rB can be ignored.

It can be seen that the solution above for U(r) is still not the free space Green’s function because the inner
shell at rC is still present. In other words, the solution U(r) does not yet satisfy

∇2G(r, 0) = −δ(r) (4.6.39)

For that the inner shell which contains the source charge at rC must shrink to (almost) zero. Recall that
the flux is a constant. As we let the coordinate tend to zero, holding the flux constant, the charge density
must become arbitrarily large near r = 0. Then we obtain the result that

G(r, 0) =
1
r

(4.6.40)

satisfies the homogeneous Laplace’s equation everywhere except at the location of the source at r → 0 where
it is undefined, and so this agrees with the defining statement (4.6.39).
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Chapter 5

Numerical Green’s Functions

§5.1. The Pseudo Green’s Function Approximation.

As discussed back in Chapter 1, the archetypal boundary value problem is Laplace’s equation in the homo-
geneous case,

∂2U

∂x2
= 0 (5.1.1)

and in the inhomogeneous case, Poisson’s equation,

∂2U

∂x2
= −f(x) (5.1.2)

This is the simplest second-order equation because the differential equation has only the highest derivative on
the left-hand side. As was presented in equation (1.2.5), the numerical approximation for Poisson’s equation,
derived from the linearized differential in a small region about the solution point, is essentially a weighted
sum of the ”boundary” points in the homogeneous case.

U(x′) =
n∑

j=1

Lj(x)Uj (5.1.3)

In the homogeneous case, a term is added which is the forcing function, f(x), from the differential equation,
evaluated at the solution point weighted by an approximation of the ”pseudo Green’s function,” P (x),

U(x′) =
n∑

j=1

Lj(x)Uj + P (x′)f(x′) (5.1.4)

This observation is simple given a finite difference approximation of Poisson’s equation, and its solution. For
example, the one-dimensional approximate solution of Poisson’s equation in a small, differential region, is

U ′ = UA
(xB − x′)

(x′ − xA) + (xB − x′)
+ UB

(x′ − xA)
(x′ − xA) + (xB − x′)

+ f ′
(xB − x′)(x′ − xA)

(x′ − xA) + (xB − x′)
(xB − xA) (5.1.5)

Comparison of (5.1.4) and (5.1.5) shows that the latter provides an example of the weight functions. In
this case it is obvious that the functions multiplying the boundary point, UA and UB , are the two-point,
Lagrange interpolation functions.
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But the inhomogeneous term must still be interpreted. By comparing (5.1.4) and (5.1.5) the correspondence
is made that the P (x) is related to the pseudo Green’s function, G(x).

P (x′) =
(xB − x′)(x′ − xA)

(x′ − xA) + (xB − x′)
(xB − xA) = Gs(x′)(xB − xA) (5.1.6)

The factor xB − xA can be seen as the corresponding, numerical, volume integration that appears in the
Green’s function magic rule. The factor Gs(x′) in (5.1.6) is the normalized product of the unnormalized
factors appearing in each of the boundary weights. The normalization factor is the sum of the (unnormalized)
boundary weights. If the unnormalized boundary weights are denoted by the symbols wj , and the factors
contained in the boundary weights are denoted by the symbol Ak, then the expression for each of the
boundary weights must be

wj =
∏
k 6=j

Ak

Wj =
wj∑
j wj

=

∏
k 6=j Ak∑

j wj
(5.1.7)

The pseudo Green’ function is then defined by expression that is a synthesis of the boundary weights,

Gs =
∏

k Ak∑
j Wj

(5.1.8)

It can be seen that the pseudo Green’s functions is the product of all the factors in the set which comprise
the unnormalized boundary weights.

In the two-dimensional equivalent problem the Poisson’s equation

d2U

dx2
+

d2U

dy2
= −f(x, y) (5.1.9)

the finite difference integration of the two second-order partial derivatives produces interpolation functions
that align with the Cartesian coordinate axis

U ′ = UA∆y
(xB − x′)(yD − y′)(y′ − yC)

N
+ UB∆y

(x′ − xA)(yD − y′)(y′ − yC)
N

+

UC∆x
(yD − y′)(xB − x′)(x′ − xA)

N
+ UD∆x

(y′ − yC)(xB − x′)(x′ − xA)
N

+

f ′∆x∆y
(xB − x′)(x′ − xA)(yD − y′)(y′ − yC)

N
(5.1.10)

where the normalization factor N is the sum of the unnormalized weight factors on the boundaries,

N = ∆y(xB − x′)(yD − y′)(y′ − yC) + ∆y(x′ − xA)(yD − y′)(y′ − yC)+

∆x(yD − y′)(xB − x′)(x′ − xA) + ∆x(y′ − yC)(xB − x′)(x′ − xA)
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An examination of the factors appearing in (5.1.10) shows that the interpolation depends on the dimensions
of opposing areas. Here the boundary points xA, xB , yC , and yD are at the midpoints of the figure, not at
the vertices.

Figure 5.1.

From equation (5.1.10) it is seen that the factoring of the influence functions that weight the boundary
points, and the factors in the pseudo Green’s function, follows the algorithm shown in (5.1.7) and (5.1.8).
The pseudo Green’s function is a polynomial whose zeros are on the boundary points.

Comparison of the last term in (5.1.10),

f ′∆x∆y
(xB − x′)(x′ − xA)(yD − y′)(y′ − yC)

N
(5.1.11)

with the pseudo Green’s function,

(xB − x′)(x′ − xA)(yD − y′)(y′ − yC)
N

(5.1.12)

shows the extra factors ∆x and ∆y, which are not present in the general polygon interpolations derived
from the Vandermonde matrix or the opposing areas method (see Section 2.4, 2D Interpolation by Opposing
Areas). The question naturally arises how to interpret ∆x and ∆y with regard to the numerical weighted
sum approach to integrating the differential equation.

The factor ∆x∆y appears to be equivalent to the volume integration in the Green’s function magic rule.
Likewise, the factors ∆x and ∆y on the boundary terms appear consistent with the surface integration in
the magic rule. Another question arises as to the role of the magic rule integrations with respect to the
numerical integration being performed here by the finite differencing. A hint that will help resolve this issue
appears conspicuously in the normalization factor N . Since ∆x and ∆y appear as factors in the sum of
terms in N it follows that they must be incorporated into the weight factors, because the normalization is
the sum of the weights.

Since the pseudo Green’s function has been identified as the product of all the factors, one each, that appear
in the weight functions it would be permissible to include ∆x∆y in the definition of the pseudo Green’s
function. For numerical purposes, the decision will ultimately depend on whether the model parameters
are set to insert the density f ′(x′, y′) as the source samples or the finite quantity Q′ = f ′∆x∆y as the
source. However, if the weighted sum interpolation is generalized to non-orthogonal shaped elements, such
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as Delauney triangles, and the method of opposing areas is used, the pseudo Green’s function obtained will
be the natural factor of f ′, not Q′.

Henceforth in this discussion it will be assumed that the general approach of interpolation by opposing areas
will be used. Then the numerical solution of Poisson’s equation will be taken from the definition shown in
equation (1.2.5),

U(x′, y′) =
n∑

j=1

Wj(x′, y′)Uj + P (x′, y′)f(x′) (5.1.13)

The weight functions will be defined according to expression (5.1.7),

wj =
∏
k 6=j

Ak

Wj =
wj∑
j wj

=

∏
k 6=j Ak∑

j wj
(5.1.14)

with the ”power factor,” P (x′, y′) defined in accordance with expression (5.1.8),

P (x′, y′) =
∏

k Ak∑
j Wj

(5.1.15)

The formulas listed above represent the numerical integration of the simplest of all boundary-value differential
equations. The work needed for generalizing the weighted sum approach for particular differential equations
containing additional derivative terms will require modification of the weight factors and, consequently, of
the power factor.

In summary, the Green’s function magic rule was taken to represent the form of the numerical solution
around any particular node in the finite difference model. It is seen that in numerical integration interpo-
lation possesses similar properties to what propagation does in the global domain. The interpolations are
constructed from finite differencing the derivatives, and it will be seen that with more derivatives added to
the differential equation the interpolations will be modified thereby. The pseudo Green’s function concept
affords a method for incorporating the effect of the inhomogeneous term in the differential equation as a
polynomial whose zeros are the boundary points of the element at a particular node of the finite difference
model.
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§5.2. The Induced Boundary Charge Method.

The most fundamental approach to finding a Green’s function in electrostatic field theory is the Method of
Images. With the Method of Images the boundary conditions are simulated by the placement of point charges
at symmetric locations. The presence of a point charge in the vicinity of a conducting boundary causes equal
and opposite charges to be induced on the surface of the boundary. The field lines on the conductor are
perpendicular to the surface. The potential on the (grounded) surface is held at a fixed potential, which
can be assigned a value of zero. On the other hand, it can be noticed that the mathematical configuration
of two point charges results in a symmetry line between them where the potential and field lines have the
same values that would occur on a conducting surface. The Method of Images is a technique for producing
the same boundary conditions that occur on a conducting surface, that is, zero potential and perpendicular
field lines, with an equivalent configuration of ”image” charges.

The method of virtual charges on the boundary is NOT the familiar method of images. Virtual charges is a
more brute force method than the method of images. Virtual charges are the actual charges that would be
induced on the surface, not the imposition of a virtual image charge. The question is posed: what distribution
of boundary charges can balance the effect of a point source charge and make the potential at the boundary
zero? For a point charge at the source point, Ps, and a point on the boundary, Pb, what distribution of
charges along the boundary makes the potential at Pb equal to zero? The answer is found by calculating
the sum of the potentials at Pb due to the (unknown) charges on the boundary and the source charge. The
sum is repeated at every point, Pb, along the boundary to obtain a set of N simultaneous equations in N
unknowns: the N charges on the boundary. The values of the charges on the boundary is the solution which
allows us to create a Green’s function.

The Green’s function is the potential sum, using the free-space potential formula for every source charge–the
boundary charges and the ”source” charge. The Green’s function, however, is valid only for the fixed location
of the point source charge that was used to find the boundary charges. The solution must then be repeated
for each location of a source charge in the source distribution.

To be quite clear, this approach is none other than the elementary physics lessen whereupon a potential due
to a distribution of point charges is calculated with a sum of free-space Green’s functions. One of those point
charges will be the ”source” charge, and all the others are the induced surface charges. This is perhaps an
iterative approach to finding the Green’s function in the interior of a closed region: first treat all the charges
as if they were in free space, then use the result to form a (single) Green’s function that incorporates the
boundary. It may be observed as well that this approach is related to what is called the boundary element
method.

The above ideas are illustrated with the following mathematical expressions. The static electric potential at
point ~r = x, y, z due to a charge distribution at ~r′ = x′, y′, z′ is typically written using the Green’s function
”magic rule”

Φ(~r) =
∫

v′
G(~r;~r′)ρ(~r′)dv′ (5.2.16)

where G(~r;~r′) is the Green’s function. In free-space the Green’s function has the form, in 3 dimensions, of
of

G(~r, ~r′) =
1

4π|~r − ~r′|
(5.2.17)

or in 2 dimensions

G(~r, ~r′) =
1
4π

ln |~r − ~r′| (5.2.18)

To evaluate the integral (5.2.16) over the boundary region numerically we divide the integration region into
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a grid, and (5.2.16) becomes a sum of integrations over each grid element. The potential at point ~r due to
all the charges at points ~r′j , can be written

Φ(~r) =
∑

j

Φ̄ij (5.2.19)

where the Φ̄ij is the potential at i due to a charge distribution at j. Each term in the sum of (5.2.19) is an
integration over a grid element. Let the charge distribution be constant over the (small) region of the grid
element. Then the potential at location i due to a charge at location j is

Φ̄ij(~r) =
∫

∆v

Gij(~r;~r′)dv′ (5.2.20)

where v is a volume element approximating a surface element by making the dimension, δ, perpendicular to
the surface very thin. Remember, we are not solving with the standard Green’s function magical rule, so
don’t expect the familiar surface integral here. On a two-dimensional problem, say a rectangle, v will be an
element around the point x,y on the boundary where the potential is observed, and v′ will be at the point
x′, y′ of the source point charge on the boundary. The elements will be taken along the line of the boundary,
perhaps ∆v = ∆x · δ or ∆v = ∆y · δ.
Now write the potential observed at the same location, v, due to a the ”source” charge in the interior of the
figure. This is the source charge in the usual sense of the word: it is the charge that usually appears under
the volume integral term of the Green’s function magic rule.

Ψ̄i(~r) =
∫

∆v

Gi(~r; ~R)dV ′ (5.2.21)

where the integral is taken over a small volume ”locus”, dV ′, around the unit source charge of constant
density at ~R′.

A system of N equations in N unknowns will be constructed. Each equation represents the sum of potentials
at a particular point on the boundary. In order to achieve a potential of zero on the boundary each of these
sums must be equal to zero. The system of equations is equivalent to a matrix equation in which the matrix
contains the potentials calculated using the boundary charges as sources, and the source vector contains the
potentials from the source charge. The solution vector will be the distribution of charges along the boundary
that makes the potential there zero:


Φ̄11 Φ̄12 · · · Φ̄1N

Φ̄21 Φ̄22 · · · Φ̄2N
...

...
. . .

...
Φ̄N1 Φ̄N2 · · · Φ̄NN




q̄1

q̄2
...

q̄N

 =


−Ψ̄1

−Ψ̄2
...

−Ψ̄N

 (5.2.22)

An example of the induced boundary charge method is shown in the figure below. The potential is held at
zero at the boundary, and a ”single” charge is introduced to the center of the square.
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Figure 5.1.

The figure shown was obviously produced for a source charge with fixed location at the center. For point
charges at other locations the matrix must be solved again and again. Also, it should be noted that the
matrix becomes singular in the limit as the number of boundary charge samples becomes large. It is a simple
observation that the singularity comes from the similarity between equations for adjacent charge locations.
As the number of locations increases, the distance between them decreases, and one equation in the system
of equations becomes nearly equal to the adjacent location’s equation.
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